10.3 AI775

10.3.1 General information

The AI775 is a standard analog input module.

10.3.2 Order Data

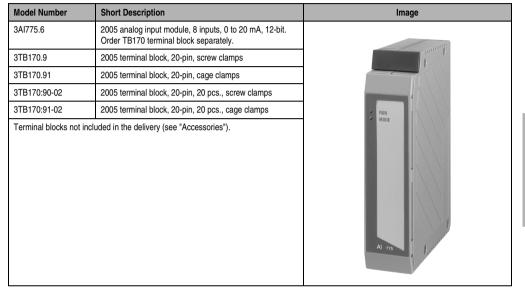


Table 194: AI775 order data

10.3.3 Technical Data

Product ID	AI775
C-UL-US Listed	Yes
B&R ID Code	\$81
Number of Inputs	8 differential inputs
Electrical Isolation Input - PLC Input - Input	Yes No
Input signal Nominal Min./Max.	0 to 20 mA -50 to +50 mA
Operating Modes Normal Operation Special Operating Mode 1 Special Operating Mode 2	Cyclic measurement with optional averaging Direct software timing Software timing using a default time of 2000 - 65535 µs

Table 195: AI775 technical data

Chapter 3 B&R 2005 Modules

Product ID	AI775	
Digital Converter Resolution	12-bit	
Non-Linearity	±1 LSB	
Output Format	INT \$0000 - \$7FF8 1 LSB = \$0008 = 4.883 μA	
Conversion Procedure	Successive approximation	
Conversion Time for all Channels Normal and Special Operation Normal Operation with Active Averaging	< 1 ms < 1.5 ms	
Load	50 Ω	
Voltage Drop at 20 mA	1 V	
Input Filter	Low pass 1st order / cut-off frequency: 450 Hz	
Basic Accuracy at 25° C	±0.1% ¹⁾	
Offset Drift	Max. ±0.0025% /° C ¹⁾	
Gain Drift	Max. ±0.01% /° C ²⁾	
Repeat Precision	±0.05% ¹⁾	
Cross-Talk between Channels	-66 dB	
Common-Mode Rejection DC 50 Hz	55 dB 50 dB	
Maximum Modulation Compared to Ground Potential	±50 V	
Common Mode Modulation Capability between Two Channels	±15 V	
Power Consumption 5 V 24 V Total	Max. 1 W Max. 3.5 W Max. 4.5 W	
Dimensions	B&R 2005 single-width	

Table 195: AI775 technical data

Refers to the measurement range.
 Referring to the current measurement value.

10.3.4 Status LEDs

Image	LED	Description
	RUN	The RUN LED indicates that the analog/digital converter is running.
	MODE	The MODE LED flashes briefly if a start pulse is detected in one of the two special operating modes.
RUN MODE		

Table 196: AI775 status LEDs

Chapter 3 B&R 2005 Modules

10.3.5 Pin Assignments

	Connection	Assignment
	1	+ Input 1
	2	- Input 1
	3	+ Input 2
	4	- Input 2
	5	+ Input 3
	6	- Input 3
	7	+ Input 4
	8	- Input 4
9 🔲 💿	9	Shield
	10	Shield
12 2 2 2 2 3	11	Shield
	12	Shield
16 Ø	13	+ Input 5
18	14	- Input 5
	15	+ Input 6
TB170	16	- Input 6
	17	+ Input 7
	18	- Input 7
	19	+ Input 8
	20	- Input 8

Table 197: AI775 pin assignment

Signal Cable Connection

Shielded cables must be used with analog input modules. The ground connection for the shield is made on one of the terminal block shield connections provided for the two inputs.

For EMC reasons, it is recommended to short circuit the inputs which are not used.

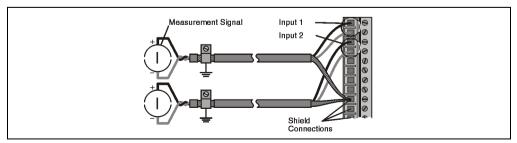


Figure 126: AI775 signal cable connection

The four shielded connections are of the same value and each connected via 100 Ω resistors with ground ($\underline{\perp}$, that means: a spring contact and a mounting rail).

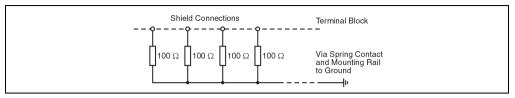


Figure 127: AI775 shielded connection

10.3.6 Input Circuit Diagram

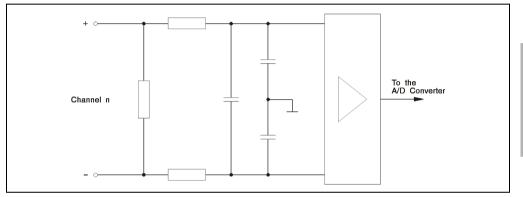


Figure 128: AI775 input circuit diagram

10.3.7 Operating Modes

Three operating modes are available:

- Normal operation (default setting)
- Special Operating Mode 1: Direct software timing
- Special Operating Mode 2: Software timing using default time

Change of Operating Mode

- Normal operation is set during power-on or after a reset.
- Changing from normal operation to one of the special operating modes is possible at any time. To do this, the mode register 2 must be set to the respective value. When a change in operating mode is carried out, it is acknowledged in status register 2, the register which displays the current operating mode.
- However, changing from one of the special operating modes to another operating mode is not possible.

Chapter 3 B&R 2005 Modules

Normal Operation

Normal operation is set after power-on.

All channels are converted cyclically and data is deposited in the dual ported RAM in the agreed INT format. The conversion time for all channels is <1 ms.

Averaging can only be switched on in cyclic operation, using mode register 1. The conversion time increases slightly to <1.5 ms, due to the higher computing time needed.

Special Operating Mode 1: Direct software timing

Mode register 2 must be set to the following value : %00010000

With this type of operation, the measurement cycle is started on the module by the application program, which sets bit 7 from mode register 8 to 0 (start pulse). Conversion of all eight channels is carried out, without responding to further start pulses. The end of the cycles is registered by setting bit 7 in the status register 2.

Application example: Data acquisition (without jitter) in high-speed task classes (e.g. for a controller).

Mode Register 8	Analog Input Module	Time
Write access with bit 7 = 0 (start pulse)	Module in delay loop	t_0
	Bit 7 in status register 2 = 0	t_0 + 20 to 40 μs
	Start measurement channel 1	t_c1 = t_0 + 128 to 130 µs
	Start measurement channel 2	t_c1 + 1 * 85 µs
	Start measurement channel 3	t_c1 +2 * 85 µs
	Start measurement channel 4	t_c1 +3 * 85 µs
	Start measurement channel 5	t_c1 +4 * 85 µs
	Start measurement channel 6	t_c1 +5 * 85 µs
	Start measurement channel 7	t_c1 +6 * 85 μs
	Start measurement channel 8	t_c1 +7 * 85 μs
	Write measurements in the DPR (start up)	1)
	Write measurements in the DPR (end)	1)
	Bit 7 in status register 2 = 1(cycle end)	t_0 + 900 μs
The next start pulse is possible	Module in delay loop	

Table 198: AI775 Special Operating Mode 1: Direct software timing

 Writing the measurement value in the Dual Ported RAM (DPR) can be interrupted by accessing the module using the bus. Therefore, it is recommended that handling of affected I/O variables in the special operating modes should only be made by the "Direct_IO" FBKs.

%00110000

Special Operating Mode 2: Software timing using default time

Mode register 2 must be set to the following value :

The procedure is similar to special operating mode 1. However in special operating mode 2 there is the option to set the time when the next measurement should be ended. The default time is entered in μ s as UINT in mode register 7 + 8. This write access works in the same way as a start pulse (independent of bit 7 in the mode register 8). Further write accesses are ineffective until the end of the cycles. The conversion of all eight channels is not started immediately but rather 1000 μ s before the end of the default time. The end of the cycles is registered by setting bit 7 in the status register 2. Unlike special operating mode 1, the time scale is left unchanged.

Value range for the default times: 2000 to 65535 µs

- Application example: equidistant data acquisition for controllers in normal task classes with the option of calculating the measurement time in the main CPU (e.g. using the timer function "TIM_musec" or "TIM_ticks" -> user program).
- Example: Task 1 has a cycle time of 10 ms in task class 1. At the end of the cycles, current analog values must be available for the next cycle. The "TIM_musec" function measures the current time period. If the measurement results in 2 ms, then the analog conversion must be completed in 8 ms. Defining the default time carried out with the "IO_data" function. The value 8000 is written in mode registers 7 + 8.

If the time measured in the next cycle results in e.g. 2.2 ms, then the value 7800 must be written in mode registers 7 + 8.

Mode Registers 7 + 8	Analog Input Module	Time
Default time written in μs as UINT	Module in delay loop	t_0
	Bit 7 in status register 2 = 0	t_0 + 20 to 40 μs
	Delay Loop	Depends on t_pre
	Starting internal cycles	t_St = t_pre - 1000 μs
	Start measurement channel 1	t_c1 = t_St + 128 to 130 μs
	Start measurement channel 2	t_c1 + 1 * 85 µs
	Start measurement channel 3	t_c1 +2 * 85 µs
	Start measurement channel 4	t_c1 +3 * 85 μs
	Start measurement channel 5	t_c1 +4 * 85 µs
	Start measurement channel 6	t_c1 +5 * 85 μs
	Start measurement channel 7	t_c1 +6 * 85 μs
	Start measurement channel 8	t_c1 +7 * 85 μs
	Write measurements in the DPR (start up)	1)
	Write measurements in the DPR (end)	1)
	Bit 7 in status register 2 = 1(cycle end)	t_pre - 100 μs

Table 199: AI775 Special Operating Mode 2: Software timing using default time

Mode Registers 7 + 8	Analog Input Module	Time
	Time entry sequence	t_pre
The next start pulse is possible	Module in delay loop	

Table 199: AI775 Special Operating Mode 2: Software timing using default time (cont.)

 Writing the measurement value in the Dual Ported RAM (DPR) can be interrupted by accessing the module using the bus. Therefore, it is recommended that handling of affected I/O variables in the special operating modes should only be made by the "Direct_IO" FBKs.

10.3.8 Relationship between Input Current and Converter Value

The converter value (INT format) changes in increments of 8 (0, 8, 16, ...).

Current	Converter Value		
Current	Hexadecimal	Decimal	
≤0 A	0000	0	
4.883 μA	0008	8	
≥20 mA	7FF8	32760	

Table 200: AI775 Relationship between input current and converter value

10.3.9 Variable Declarations

The variable declaration is made in B&R Automation Studio™:

Function	Variable Declarations				
	Scope	Data Type	Length	Module Type	Chan.
Single Analog Input (Channel x)	tc_global	INT	1	Analog In	1 8
Mode Register 1	tc_global	USINT	1	Status Out	0
Mode Register 2	tc_global	USINT	1	Status Out	1
Mode Registers 7 + 8 Special Operating Mode 2 "Software Timing using Default Values"	tc_global	UINT	1	Status Out	6
Mode Register 8 Start pulse in the special operating mode 1 "Direct Software Timing"	tc_global	USINT	1	Status Out	7
Status Register 1	tc_global	USINT	1	Status In	0
Status Register 2	tc_global	USINT	1	Status In	1

Table 201: AI775 variable declaration

Mode Register 1

Bits 0 and 2 - 7 must be assigned with 0.

Mode Register 1	Bit	Description
	7	0
	6	0
	5	0
	4	0
	3	0
	2	0
	1	AV - Averaging switched on
	0	0
0 0 0 0 0 0 0		
7 0		

Averaging

Averaging can be activated during normal operation. It should be noted that the conversion time increases to <1.5 ms.

AV= 0 Averaging switched off (default setting)

AV = 1 Averaging switched on

When this option is switched on, the average value is generated and transferred to the central unit. The calculation is formulated as follows:

New Average Value = Old Average Value + New Value

The positive limit for averaging is \$7FF7 instead of \$7FF8.

Mode Register 2

Mode Register 2 Bit Description 7 0 6 0 5 SWT_TIM - Software timing using default time 4 SWT DIR - Direct software timing 3 0 2 0 1 0 0 0 0 0 0 0 0 0

Bits 0 and -3 as well as 6 and 7 must be assigned with 0.

 SWT_DIR
 0......Normal operation (default setting)

 1......Special operating mode 1 (Direct Software Timing)

 SWT_TIM

 SWT_TIM is only active if SWT_DIR is set to 1!

0......Operating mode dependent on SWT_DIR (default setting)

1 Special operating mode 2 (software timing using default times)

Changing from one of the special operating modes to another operating mode is not possible!

Mode Register 7 + 8 (UINT)

٥

When using special operating mode 2 "Software Timing using Default Times", the time is defined in μ s in both of these registers. The measurement of the eight channels must be completed when this time has passed.

Value range: 2000 to 65535 µs

Mode Register 8

Bits 0 - 6 must be assigned with 0.

Mode Register 8	Bit	Description
	7	TRIGn - Start pulse
	6	0
	5	0
	4	0
	3	0
	2	0
	1	0
	0	0
0 0 0 0 0 0 0		
7 0		

TRIGn TRIGn is only active in "Direct Software Timing" operating mode (SWT_DIR to 1, SWT_TIM to 0) A write access using TRIGn = 0 triggers the immediate measurement of all eight channels. A write access with TRIGn = 1 is ignored.

Status Register 1

Status Register 1	Bit	Description
	7	x
	6	x
	5	x
	4	x
	3	x
	2	x
	1	AV - Averaging switched on
	0	I_ERR - Module error
x x x x x x x		

I_ERR 0.....Data values in the dual ported RAM (DPR) correspond to definitions.
1.....An internal error exists. That means that the data values in the Dual Ported RAM (DPR) do not correspond to the definitions. Please contact B&R if this occurs.

MW Averaging in normal operation is active (mode register 1 settings are repeated).

Status Register 2

0

7

Status Register 2							Bit	Description
							7	SWT_RDY - Software timed measurement is completed
							6	X
							5	SWT_TIM - Software timing using default time
							4	SWT_DIR - Direct software timing
							3	x
							2	x
							1	x
							0	x
х			х	х	х	x		

7

SWT_DIR SWT_DIR and SWT_TIM indicate the operating mode in which in the module can be found.

SWT_TIM

SWT_RDY SWT_RDY is only active if a special operating mode is set.

0Measurement or waiting loop is running

1The last cycle is completed

0